Zum Inhalt springen

Algebraische Umformungen


Empfohlene Beiträge

Hallo an alle!

Ich hoffe mir kann jemand von euch bei meinem kleinen Problemchen mit Rat und Tat zur Seite stehen.. und zwar geht es um folgendes:

Ich soll mir eine Wahrheitstabelle jeweils für die XOR- und XNOR-Funktion erstellen und daraus die DNF und KNF bilden. Das habe ich soweit gemacht und kam zum diesem Ergebnis:

XOR

Ein - vorm Buchstaben = NICHT

DNF: (-A^B) v (A^-B)

KNF: (AvB) ^ (-Av-B)

XNOR

DNF: (-A^-B) v (A^B)

KNF: (Av-B) ^ (-Av-B)

Soweit so gut, aber jetzt geht die Aufgabenstellung leider weiter.

Ich soll mir von der XOR-Funktion eine der beiden Darstellungen rauspicken und sie algebraisch so umformen, dass ich die Schaltung ausschließlich mit NAND-Gattern effizient realisieren kann. Das gleiche bei der XNOR-Funktion, nur dass es hierbei ein NOR-Gatter werden soll.

Ich steh total auf dem Schlauch...

Danke im voraus!

MfG

----Nachtrag---

Habe gerade etwas herumprobiert und jetzt stellt sich eine weitere Frage auf.

Darf man bei dieser Art der Rechnung die Klammern ausmultiplizieren, wie als hätte man eine "Binomische Formel"?

Dann würde meine Rechnung bei der DNF der XOR-Funktion nämlich so aussehen:

(-A^B) v (A^-B) = (-A^A) v (-A^-B) v (B^A) v (B^-B)

Die erste und letzte Klammer würden sich wegkürzen und übrig bleibt somit

(-A^-B) v (A^B)

Und das wär ja eigentlich ein NAND oder verbunden mit einem NAND NICHT.

Bearbeitet von Valerio
Link zu diesem Kommentar
Auf anderen Seiten teilen

Darf man bei dieser Art der Rechnung die Klammern ausmultiplizieren, wie als hätte man eine "Binomische Formel"?
Nein.

(-A^-B) v (A^B)

Und das wär ja eigentlich ein NAND oder verbunden mit einem NAND NICHT.

Da sehe ich zwei AND und ein OR. NAND sieht so aus: -(X^Y).

Ich kann dir schon mal verraten, dass die Lösung 4 NAND bzw. NOR enthält.

Welche Umformungen kennst du denn?

Link zu diesem Kommentar
Auf anderen Seiten teilen

OK, verstehe was du meinst. Na, dann weiß ich ja schon mal, dass mein Ansatz völliger Schwachsinn war.

Wie dem auch sei.. also so wie ich das jetzt verstanden hab, muss ich einfach nur schauen, dass ich aus dem ^ und v ein -^ mache, richtig?

Das heißt, wenn ich (-A^B) v (A^-B) doppelt negiere und 1 Negation über dem v aufhebe, hätte ich doch 1 NAND, oder?

(-A^B) v (A^-B) = -(-(-AB) v -(A-B))

Kann das stimmen?

Link zu diesem Kommentar
Auf anderen Seiten teilen

Erwischt ;)

Meine Stärken liegen ehrlich woanders... mich verwirrt diese Fülle von Gesetzen, die es zu beachten gilt und wann genau welches Gesetz zum Einsatz kommt. Andere Umformungen kann ich dir so spontan keine nennen.

Zur Aufgabe:

-(-(-A^B) ^ -(A^-B)) -> Was ist jetzt mit den ANDS in den Klammern zwischen A und B? Da ich sie ja doppelt negiert habe, bleiben sie ja eigentlich gleich, damit hätte ich aber kein NAND. Wie eben nur die Negation über dem AND auflösen?

Link zu diesem Kommentar
Auf anderen Seiten teilen

Deine Meinung

Schreibe jetzt und erstelle anschließend ein Benutzerkonto. Wenn Du ein Benutzerkonto hast, melde Dich bitte an, um unter Deinem Benutzernamen zu schreiben.

Gast
Auf dieses Thema antworten...

×   Du hast formatierten Text eingefügt.   Formatierung wiederherstellen

  Nur 75 Emojis sind erlaubt.

×   Dein Link wurde automatisch eingebettet.   Einbetten rückgängig machen und als Link darstellen

×   Dein vorheriger Inhalt wurde wiederhergestellt.   Editor leeren

×   Du kannst Bilder nicht direkt einfügen. Lade Bilder hoch oder lade sie von einer URL.

 Teilen

Fachinformatiker.de, 2021 by SE Internet Services

fidelogo_small.png

Schicke uns eine Nachricht!

Fachinformatiker.de ist die größte IT-Community
rund um Ausbildung, Job, Weiterbildung für IT-Fachkräfte.

Fachinformatiker.de App

Download on the App Store
Get it on Google Play

Kontakt

Hier werben?
Oder sende eine E-Mail an

Social media u. feeds

Jobboard für Fachinformatiker und IT-Fachkräfte

×
×
  • Neu erstellen...

Wichtige Information

Fachinformatiker.de verwendet Cookies. Mehr dazu in unserer Datenschutzerklärung